高等数学作为专升本考试中的重要科目,其难度和重要性不言而喻。了解考试大纲,能够让同学们明确学习的方向和重点,做到有的放矢地进行备考。 在这里,小编详细梳理了《高等数学》考试大纲中的各个知识点、题型要求以及能力考查方向。希望这份大纲内容能成为同学们备考路上的得力助手,帮助大家制定科学合理的学习计划,高效地掌握高等数学的知识体系。 无论是函数、极限与连续,还是一元函数微分学、积分学;无论是向量代数与空间解析几何,还是多元函数微积分、无穷级数和微分方程,每一个板块都至关重要。同学们可以对照大纲,逐一攻克,扎实基础,提升能力。 试卷题型及分值分布 有选择题、填空题、计算题、综合题等题型。选择题和填空题主要考查基本概念和公式的掌握,计算题考查解题能力和运算能力,综合题考查综合运用知识的能力 单项选择题 30分 填空题 30分 计算题 30分 综合题 10分 考试内容与范围 函数占20%-25%,一元函数微分学占25%,一元函数积分学占25%,向量代数与空间解析几何占3%-6%,多元函数的微积分学及应用占3%-5%,常微分方程占5%-7%,无穷级数占3%-6%。 01 函数、极限、连续 考试内容:函数的定义域;函数的极限;函数的间断点并确定间断类型;运用介值定理推证一些简单命题。 函数:理解函数概念,会求函数的定义域。掌握函数的奇偶性、单调性、周期性、有界性等性质。理解复合函数与反函数的定义,掌握基本初等函数的性质与图形。 极限:理解极限概念及性质,熟练掌握极限的四则运算法则,掌握用两个重要极限来求某些极限的方法。理解无穷大与无穷小的概念,以及两者的关系,掌握无穷小量的性质和无穷小量的比较。 连续:理解函数连续性的概念,会判别函数间断点的类型。了解初等函数的连续性和闭区间上连续函数的有界性定理、最值定理、介值定理,并会应用这些性质。 02 一元函数微分学 考试内容:导数概念;求导法则、方法;高阶导数的概念;求微分;求隐函数的一阶导数。 中值定理;洛必达法则;函数增减性的判定法;函数极值与极值点,最值;曲线的凹凸性、拐点;曲线的水平渐近线与垂直渐近线。 理解导数与微分的概念,理解导数的几何意义,会求平面曲线的切线和法线方程;了解导数的物理意义;理解函数的可导与连续之间的关系。 理解罗尔定理、拉格朗日中值定理;掌握用洛必达法则求未定式的极限的方法。掌握用导数判别函数的增减性及求函数的极值、最大值和最小值的方法。会用导数判断函数图形的凹凸性,会求拐点,会描绘较简单的函数的图形。 03 一元函数积分学 考试内容:不定积分的性质;不定积分的换元积分法;分部积分法求不定积分;求一些简单有理函数的积分。 定积分的概念;定积分的性质;定积分的计算;积分上限函数求导;无穷区间的广义积分;定积分的应用;平面图形的面积、旋转体的体积。 掌握不定积分和定积分换元法和分部积分法,会求有理函数、三角函数有理式和简单无理函数的积分。理解积分上限函数及其求导定理,熟练掌握牛顿一莱布尼兹公式。了解广义积分的概念。掌握用定积分表达和计算一些几何量与物理量(如面积、体积)的方法。 04 向量代数与空间解析几何 考试内容:求两个向量的模和方向余弦、向量的数量积、两平面的夹角。 向量:理解向量与空间直角坐标系的概念。掌握向量的线性运算、数量积与向量积,理解两个向量垂直和平行的条件。掌握单位向量、方向数与方向余弦,向量的坐标表达式以及用坐标表达式进行向量运算的方法。 方程:掌握平面与直线方程及其求法,理解曲面方程概念,掌握常用二次曲面的方程与图形,了解空间曲线的方程。 05 多元函数的微积分学及应用 考试内容:多元函数的概念;二元函数的极限与连续的概念;多元函数偏导数的概念与几何意义;全微分的概念;全微分存在的必要条件和充分条件。 多元函数极值的必要条件;二元函数极值的充分条件;多元函数极值和最值的求法及简单应用 理解多元函数概念,了解二元函数极限与连续概念以及有界闭区域上连续函数性质。理解偏导数、方向导数、梯度和全微分概念并掌握它们的计算方法。了解全微分存在的必要和充分条件。掌握复合函数与隐函数的一、二阶导数的求法,了解曲线的切线及曲面的切平面与法线,会求函数的极值,会解决简单的最值问题。 06 常微分方程 考试内容:可分离变量方程;一阶线性方程。 要求:理解微分方程的阶、解、通解、初始条件和特解。掌握可分离变量方程的解法。掌握一阶线性方程的解法。 07 无穷级数 考试内容:判断等比级数、P级数的敛散性;判断一些简单级数是否收敛; 要求:理解无穷级数收敛、发散的概念。理解级数收敛的必要条件和级数的主要性质。
用户协议