联系客服

联系客服

400-023-1785

在线咨询

微信咨询

微信扫码咨询

微博关注

在线客服

顶部

切换栏目
选择分类
升本政策
考试科目
考试大纲
招生简章
报名时间
考试时间
招生计划
专业对照
招生院校
历年试题
分数线
成绩查询
报考流程
升本培训
选择地区
重庆专升本
云南专升本
贵州专升本
四川专升本
山东专升本
湖北专升本
河南专升本
陕西专升本
浙江专升本
山西专升本
安徽专升本
河北专升本
甘肃专升本
江西专升本
新疆专升本
湖南专升本
辽宁专升本
海南专升本
天津专升本
宁夏专升本
内蒙古专升本
黑龙江专升本
广西专升本
点击筛选
取消筛选
您现在的位置:首页 > 升本资讯 > 正文

陕西统招专升本2021年高数考试大纲

2021-07-21
来源:好老师专升本
阅读 3737
导读:小编整理了一份2021年陕西统招专升本高数考试大纲,2021年陕西专升本考试已经结束了,接下来就是2022年准备参加专升本考试的同学,现在可以开始准备了,那我们现在一起来看看2021年陕西专升本高数的考试大纲吧!

小编整理了一份2021年陕西统招专升本高数考试大纲,2021年陕西专升本考试已经结束了,接下来就是2022年准备参加专升本考试的同学,现在可以开始准备了,那我们现在一起来看看2021年陕西专升本高数的考试大纲吧!

陕西统招专升本2021年高数考试大纲

2021陕西专升本高等数学考试大纲


Ⅰ.考试范围

普通高等教育专升本招生考试高等数学考试范围包括;陋数与股眼。--元的数微分学及其应用.一元函数积分学及共应用.向量代数与空间唇 几何.多元函数微分学.多元函数积分学.无穷级数﹒常微分方程.


Ⅱ .考试内容与要求

要求考生全面掌握高等数学的基本概念,(本理论和本运算按能.具县有水科学习所必需的抽象思维能力,逻辑推理能力,基本运算能力以及综合运用所学知识分析问题和解决问题的能力。具体要求可分为较高要求(用B米长示?和一般要求(用八来技乐>两个层次:较高要求雷要考生深人理解,牢附掌{.熟练应用,J中概念.理论用"理.到”一-词表述.方法、运算用“掌握"一词表述;一殷要求也是不可缺少的.只是在要求上低于前者.共中概念.理论用“了解”一词表述,方法、运算用“会“或"了能长述..

各部分考试内容及具休要求如下:

一,函数与极限

考试内容

1.丽数的概念及表示法。函数的有界性,单测性,奇偶性和周期性。反函数﹒隐函数和复合函数。基本初等函数的性质及其图形。初等函数。简单应用阿题中函数关系的建立..

2.数列极限的定义及性质。丽数极限的定义及性质,函数的左.右战限。无穷小与无穷大。无穷小的比较。极限的四则运算。极限春在的夹迢准则和单渊有界准则。西个重要极限:

3.函数连续的概念。函数间断点及其类型。连续函数的和、差.积.商、复合函数、反函数的连续性。初等函数的连续性。闭区间上连续函数的性质(最大值、最小值定理.介值定理)。


考试要求

1、理解函数的概念.掌握函数表示法。

2.了解函数的有界性.单调性.奇偶性和間期性。

3.理解复合函数的概念.了解反函数及隐两数的概念.

4.学握基本初等函数的性质及其图形.

5,会建立简单应用问题中的函数关系。

6、理解数列极限和函数极限的概念﹐理解函数的左、右极限的概念以及磁限存在与左.右极限之间的关系。

7、掌握极限的性质及四则运算法则。

8.掌握极限存在的两个准则﹐并会利用其求极限。9.学握利用两个重要极限求极限的方法。

10、理解无穷小、无穷大的概念,会无穷小的比较。11,掌握用等价无穷小代换求极限的方法。

12.理解函数连续性的概念﹐会判别函数间断点的类型。

13.会用初等函数的逛续性和闭区问上连续函数的性质(最大值、最小值定理和介值定理)解决和关问题.


二,一元函数微分学及其应用考试内容

1。导数的概念。导数的几何意义和物理意义。平而曲线的切线和法线。函数可导性和连续性之间的关系。函数和,差,积、商的求导法则。复合函数及反函数的求导法则.路所数的导数及对数求导法。由参数方理所确定的函数的求导法则。基本初等函数的导数公式。高阶导数的概念..

2.微分的概念。微分的儿何意义。函数可导与可微的关系。微分的四则运算法则。微分形式不变性。

3,罗尔中值定理。拉格朗日中值定理。柯西中值定理。罗必达法则。

4.应用导数讨论:丽数单调性,函数的极值,丽数的最大值和圾小值,函数图形的凹凸性-扬点及渐近线,茁数图形的描绘,弧微分-


考试要求

1.理解导数的概念及其几何意义.会求平面曲线的切线方程和法线方程。2.了解导数的物理意义。

3,理斛函数的可导性与连续性之问的关系。

4,掌探导数的四则运算法则和复合函数的求导法则n会求分段函数和反函数的导数.

5,掌握基本初等函数的导数公式,了解初等函数的可导性。

6,理解砧阶导数的概念·会求函数的n阶导数,掌掘隐函数和由参数方程所确定的函数一阶与二阶导数-

7,理斛微分的慨念及其几何怠义。了解函数可导与可微的关系。

8,掌握微分的四则运算法则·了解微分形式不变性.

9.会用罗尔中值定理.拉格朗旧中值定理解决相关问题v了鄢柯夜中值定理.

10,掌握用罗必达法则求未定式极限的方法.

11.理解函数的极值慨念﹐掌髑用导数判断函数的单调性利求单训区间与极值的方法.掌掘丽数最大值和最小值的求法及其应用

12.会用导数判断函数图形的凹凸性,会求函数图形的凹凸区间和找点。会求函数/阁形的水平和结惭近线-公描绘函数的图形。


三、一元函数积分学及其应用考试内容

1,原函数和不定积分的概念。不定积分的儿本性盾。北本积分公式。不定积分的筷元法和分部租分法。有理函数积分法。

2。定积分的概念定积分的儿何意义和物理意义。定积分的性质。定积分的中值定理。变上限定积分及其导数。牛顿-莱布尼兹公式。定积分的换元积分法和分部积分法。

3.定积分的应用。


考试要求

1.理解原函数和不定积分的概念。

2.学握不定积分的基本公式和性质

3.掌握不定积分的换元法和分部积分法。会求有理函数的不定积分。

4.理解定积分的概念和几何意义。了解定积分的物理意义。

5.节握定积分的性质,理解定积分的中值定理。

6.理解变上限定积分是其上限的函数.掌握其求导方法。

7。掌握牛顿―莱布尼兹公式。

8,掌握定积分的换元积分法和分部积分法。

9。掌握用定积分计算平面图形的面积。会用定积分计算旋转体的体积。


四.向量代数与空间解析几何

考试内容

1.向量的概念,向量的线性运算。两向量的数量积和向计积。两向址的夹角。两向量垂直和平行的条件。

2,空间直角坐标系。向量的坐标表达式单位向量。方向角及其余弦。

3.平面方程。直线方程。点到平面的距离。平面与平面、直线与直线﹑直线与平面的相互关系。

4。空间曲线及曲面。


考试要求

1.理解向址的概念及其表示,掌握向太的线性运算数量积和向tn.了解两向量的夹角以及两向量垂直和平行的条评。

2、理解空间直角坐标系,掌握向N的坐标表达式以及用坐标表达式进行向量运算的方法,掌握单位向H,方向角及其余弦。

3。掌拥平面方程和直线方程及其求法,会求点到平面的距离,会利用直线与平面的相互关系(平行,垂直,相交等)解决有关问题。

4.了解曲面方程和空问曲线方程的概念。了解常用二次曲面的方程及其图形。


五、多元函数微分学

考试内容

1.多元函数的概念。二元函数极限和连续的概念。有界闭区域上连续函数的性质。

2、偏导数的概念。高阶偏导数的概念。全微分的概念。全微分存在的必要条件和允分条件。多元复合函数.隐函数的求导法。方向导数和受度的概念。

3.空间曲线的切线和法平面。曲面的切平面和法线。多元函数的极值。拉格朗日栗数法。多元函数的最大值和最小值。


考试要求

1,理解多元函数的概念了解二元函数的极限与连续性的概念﹐了解有界闭区域上连续函数的性质。

2,理解彻导数和高阶俯导数的慨念。

3.掌握多元复合函数-阶.二阶伯导数的求法,掌握隐函数的俯导数的求法,4.理解方向导数和梯度的概念v并掌握其计算方法。

5.理解全微分的概念..了解全微分存在的必要条件和充分条件。

6.了解曲线的切线和法平面及曲面的切平面和法线的概念,并会求它们的方程,

7、理解多元丽数的极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解判定二.元函数极值的充分条件,会求二元函数的极值,


六,多元函数积分学

考试内容

1.二积分的概念及性质。二重积分在直角坐标系和极坐标系中的计算。二重积分的应用。

2.对弧长的曲线分和对坐标的曲线积分的概念,性质及计算。格林公式,平面曲毁积分与路径无关的条件。


考试要求

1,理解二重积分的概念和性质。

2.节握‘:重积分在直角坐标系和极坐标系中的计算方法。3.理解两类曲线积分的概念·了解两类曲线积分的性质。4、公计算两类曲线积分。

5、公用格林公式,公利用平面曲线积分与路径无关的条件计算对坐标的曲线积分。6.会用二重积分求一些儿何星t。


七,无穷级数

考试内容

l.常数项缎败及J收敛与发散的概念。常数项级数的基本性质及收敛的必要条件。儿何级数与jp/数的敛骸性。正项级数的比较巿敛法和比值审敛法。交错级数的菜布尼兹定理。常数项级数的绝对收做与条件收敛的概念。

2.函数项级数及其收做蝮、和函数的概念。幂级数的收敛半径,收敛区间和收B域。幂级数在其收敛区间内的基t性:质。简单幂级数的和w数求法。函数奏勒级数的慨念.涵数可展开为粲勒级数的充分必要条件。函数忑缀数展开的唯一性。


考试要求

1.理解常数项级数及其收敛与发散的概念,理解常数项级数绝对收敛与条件收敛的概念。

2,会利用数项级数的基本性滩及收效的必要条件判别数项级数的敛股性。3.掌握几何级数与p级数的敛散性.

4.会用正项级数的比较市敛法和比值审敛法。5.掌握交钻级数的莱布尼兹定理。

6.了解函数项级数及其收敛域,和函数的概念

7.萃握幂级数的收敛半径,收敛区间和收敛城的求法

8.理解幂级数在其收敛区间内的基本性质.掌握幂级数的和函数的求法。

9.了解函数的泰勒级数的概念以及函数展开为泰勒级数的充分必要条件了解函数彩级数展开式的唯-性。

10.掌握c.xinz.,cosz,ln(1+z)和(1+z)的麦克劳林展开式.并会利用它们将呃数间接展开为幂级数。


八.常微分方程考试内容

1.常微分方程的概念。微分方程的阶﹑解,通解及特解的概念。初始条件。初值问题及其特解。线性微分方程。

2变量可分离的微分方程。一阶线性微分方程。可降阶的高阶微分方程。

3.线性微分方程解的性质及通解的结构定理。二阶常系数齐次线性微分方程的t法。简单的二阶常系数非齐次线性微分方程的解法。

4.微分方程的应用问题。


考试要求

1.理解微分方程及其阶.解、通解和特解等概念。2.了解初始条件.初值问题及初值问题特解的概念。

3.理解齐次线性微分方程和非齐次线性微分方程的概念,

4、掌握―阶变量可分离的微分方程和一阶线性微分方翟的解法。

5.了解降阶法解微分方程:y= f x).y"= f.r.y')和y"一fy.y')

6.理解线性微分方程解的性质及通解的结构定理.

7.掌握二阶常系数线性齐次微分方程的解法-

8.会求解自由项为多项式.指数函数,正弦函数.余弦函数的二阶常系数线性非齐次微分方程。

9.会用微分方程解决应用问题。


Ⅲ.考试形式及试卷结构

一,考试形式

1,考试采用闭卷.笔试形式。试卷满分i50分,考试时间150分钟。

2,试卷采用分卷形式。分卷包括试题和答题卡两部分,考生必须将答案写在答题卡上,写在试题上的答案无效。


二.试题题型

选择题17%

填空题17%

计算题53%

应用题与证明题13%


三,试题难度

容易题30%

中等题50%

较难题20%

以上就是小编分享的全部内容,希望对各位同学有所帮助。想了解更多专升本考试资讯,如:考试科目、考试大纲、招生政策、招生院校等专升本内容资讯,请关注陕西好老师专升本


推荐专题
留言咨询
* 姓名
* 手机
* 所在学校