山东
登录 登录 注册 注册

联系客服

联系客服

400-023-1785

在线咨询

微信咨询

微信扫码咨询

微博关注

在线客服

顶部

切换栏目
选择分类
升本政策
考试科目
考试大纲
招生简章
报名时间
考试时间
招生计划
专业对照
招生院校
历年试题
分数线
成绩查询
报考流程
升本培训
选择地区
重庆专升本
云南专升本
贵州专升本
四川专升本
山东专升本
湖北专升本
河南专升本
陕西专升本
浙江专升本
山西专升本
安徽专升本
河北专升本
甘肃专升本
江西专升本
新疆专升本
湖南专升本
辽宁专升本
海南专升本
天津专升本
宁夏专升本
内蒙古专升本
黑龙江专升本
广西专升本
点击筛选
取消筛选
您现在的位置:首页 > 升本资讯 > 正文

2024年山东专升本高等数学(一)考试大纲发布!

2023-12-01
来源:好老师升学帮
阅读 5478
导读:本科目考试要求考生掌握高等数学的基本概念、基本理论和基本方法, 主要考查考生识记、理解、计算、推理和应用能力,为进一步学习奠定基础。具体内容与要求如下。

Ⅰ. 考试内容与要求

本科目考试要求考生掌握高等数学的基本概念、基本理论和基本方法, 主要考查考生识记、理解、计算、推理和应用能力,为进一步学习奠定基础。具体内容与要求如下:

一、函数、极限与连续

(一)函数

1.理解函数的概念,会求函数的定义域、表达式及函数值,会建立应用问题的函数关系。

2.掌握函数的有界性、单调性、周期性和奇偶性。

3.理解分段函数、反函数和复合函数的概念。

4.掌握函数的四则运算与复合运算。

5.掌握基本初等函数的性质及其图形,理解初等函数的概念。

(二)极限

1.理解数列极限和函数极限(包括左极限和右极限)的概念。理解函数

极限存在与左极限、右极限存在之间的关系。

2.理解数列极限和函数极限的性质。了解数列极限和函数极限存在的 两个收敛准则(夹逼准则与单调有界准则)。熟练掌握数列极限和函数极限的运算法则。

4.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量 与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会

用等价无穷小量求极限。

(三)连续

1.理解函数连续性(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系。会求函数的间断点并判断其类型。

2.掌握连续函数的四则运算和复合运算。理解初等函数在其定义区间内的连续性。

3.会利用连续性求极限。

4.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理、零点定理),并会应用这些性质解决相关问题。

二、 一元函数微分学

(一)导数与微分

1.理解导数的概念及几何意义,会用定义求函数在一点处的导数(包 括左导数和右导数)。会求平面曲线的切线方程和法线方程。理解函数的可导性与连续性之间的关系。

2.熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式。

3.掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导法,会求分段函数的导数。

4.理解高阶导数的概念,会求函数的高阶导数。

5.理解微分的概念,理解导数与微分的关系,掌握微分运算法则,会求函数的一阶微分。

(二)中值定理及导数的应用

1.理解罗尔定理、拉格朗日中值定理, 了解柯西中值定理和泰勒中值定理。会用罗尔定理和拉格朗日中值定理解决相关问题。

3.理解驻点、极值点和极值的概念,掌握用导数判断函数的单调性和 求函数极值的方法,会利用函数的单调性证明不等式,掌握函数最大值和最小值的求法及其应用。

4.会用导数判断曲线的凹凸性,会求曲线的拐点以及水平渐近线与垂直渐近线。

三、 一元函数积分学

(一)不定积分

1.理解原函数与不定积分的概念, 了解原函数存在定理,掌握不定积分的性质。

2.熟练掌握不定积分的基本公式。

3.熟练掌握不定积分的换元积分法和分部积分法。

4.掌握简单有理函数的不定积分的求法。

(二)定积分

1.理解定积分的概念及几何意义, 了解可积的条件。

2.掌握定积分的性质及其应用。

3.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

4.熟练掌握定积分的换元积分法与分部积分法。

5.会用定积分表达和计算平面图形的面积、旋转体的体积。

6. 了解反常积分的概念。

四、向量代数与空间解析几何

(一)向量代数

1.理解空间直角坐标系, 理解向量的概念及其表示法,会求单位向量、

方向余弦、向量在坐标轴上的投影。

2.掌握向量的线性运算,会求向量的数量积与向量积。

3.会求两个非零向量的夹角,掌握两个向量平行、垂直的条件。

(二)平面与直线

1.会求平面的点法式方程、一般式方程。会判断两平面的位置关系(垂直、平行)。

2.会求点到平面的距离。

3.会求直线的对称式方程、一般式方程、参数式方程。会判断两直线的位置关系(平行、垂直)。

4.会判断直线与平面的位置关系(垂直、平行、直线在平面上)。

五、多元函数微积分学

(一)多元函数微分学

1.理解二元函数的概念、几何意义及二元函数的极限与连续的概念,会求二元函数的定义域。

2.理解二元函数偏导数和全微分的概念,理解全微分存在的必要条件 和充分条件。掌握二元函数的一阶、二阶偏导数的求法,会求二元函数的全微分。

3.掌握复合函数一阶、二阶偏导数的求法。

4.掌握由方程F(x, y, z) = 0 所确定的隐函数z = z(x, y) 的一阶偏导数的计算方法。

5.会求二元函数的无条件极值。

(二)二重积分

1.理解二重积分的概念、性质及其几何意义。

2.掌握二重积分在直角坐标系及极坐标系下的计算方法。

六、无穷级数

(一)数项级数

1.理解数项级数收敛、发散的概念。掌握收敛级数的基本性质,掌握级数收敛的必要条件。

2.掌握几何级数、调和级数与p 级数的敛散性。

3.掌握正项级数收敛性的比较判别法和比值判别法。

4.掌握交错级数收敛性的莱布尼茨判别法。

5.理解任意项级数绝对收敛与条件收敛的概念。

(二)幂级数

1.理解幂级数的概念, 会求幂级数的收敛半径、收敛区间和收敛域。

2.掌握幂级数在其收敛区间内的性质(和、差、逐项求导与逐项积分)。

3.掌握幂级数的和函数在其收敛域上的性质。

4.会利用逐项求导和逐项积分求幂级数的和函数。

七、常微分方程

(一)一阶微分方程

1.理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解等概念。

2.掌握可分离变量微分方程的解法。

3.掌握一阶线性微分方程的解法。

(二)二阶线性微分方程

1.理解二阶线性微分方程解的结构。

2.掌握二阶常系数齐次线性微分方程的解法。

Ⅱ. 考试形式与题型范围

一、考试形式

考试采用闭卷、笔试形式。试卷满分 100 分,考试时间 120 分钟。

二、题型范围

选择题、填空题、判断题、计算题、解答题、证明题、应用题。

了解更多山东院校专升本资讯,如招生简章,招生计划,考试大纲,考试时间等内容请持续关注好老师升学帮,帮助大家更清晰专升本的招生信息。如果需要学习上的帮助,可以在网页留言或者小程序及APP在线客服等方式联系我们哦,老师会很乐意为大家服务~

推荐专题
留言咨询
* 姓名
* 手机
* 所在学校